New Precise Measurements of Muonium Hyperfine Structure at J-PARC MUSE

P. Strasser (KEK)
on behalf of the MuSEUM Collaboration
KEK

University of Tokyo

Kyushu University

Osaka University
M. Aoki, D. Tomono

Univ. of Yamanashi
E. Torikai

U. of Massachusetts Amherst
D. Kawall

RIKEN
K. Ishida, M. Iwasaki, O. Kamigaito, S. Kanda

Nagoya University
H. M. Shimizu, M. Kitaguchi

ICU
K. Kubo

Ibaraki University
H. Inuma

JAEA
T. U. Ito

Tohoku University
K. S. Tanaka

TRIUMF
K. M. Kojima

Seoul National Univ.
S. Choi

QTech 2018
What is Muonium?

Muon:
- Elementary particle (lepton)
- 200 times heavier than an electron
- Lifetime of 2.2 microseconds.

Muonium:
- Bound state of a positive muon and an electron.
- Hydrogen-like atom free from the finite size of the nucleon.
- Most suitable for validation of bound state quantum electrodynamics (QED).
- Theoretical and experimental precision of the hyperfine structure comparable.

Precision of the hyperfine structure (HFS, $\Delta\nu$):

<table>
<thead>
<tr>
<th>Hydrogen-like atom</th>
<th>Experiment</th>
<th>Theory</th>
<th>$\frac{(\Delta\nu_{\text{theo}} - \Delta\nu_{\text{exp}})}{\Delta\nu_{\text{exp}}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydrogen</td>
<td>0.2 ppt</td>
<td>1.2 ppm</td>
<td>(-0.45 ± 1.2) ppm</td>
</tr>
<tr>
<td>Positronium</td>
<td>3.3 ppm</td>
<td>2.0 ppm</td>
<td>(15 ± 4) ppm</td>
</tr>
<tr>
<td>Muonium (Zero-Field)</td>
<td>310 ppb</td>
<td>61 ppb</td>
<td>(150 ± 320) ppb</td>
</tr>
<tr>
<td>Muonium (High-Field)</td>
<td>12 ppb</td>
<td>61 ppb</td>
<td>(23 ± 62) ppb</td>
</tr>
</tbody>
</table>
Muonium Hyperfine Structure

\[\mathcal{H} = \hbar \Delta \nu I_{\mu} \cdot J - \mu_B g'_{\mu} I_{\mu} \cdot H + \mu_B^e g_J J \cdot H \]

\(\Delta \nu_{\text{HFS}} \): Mu Hyperfine Structure

\[\Delta \nu_{\text{HFS}} \approx 4463 \text{ MHz} \]

Pure lepton
= point particle

Zeeman Splitting

Breit-Rabi diagram

\((F, M_F) \)

\((1, 1) \)

\((1, 0) \)

\((1, -1) \)

\((0, 0) \)

\[\nu_{12} + \nu_{34} = \Delta \nu_{\text{HFS}} \]

\[\nu_{12} - \nu_{34} \propto \frac{\mu_{\mu}}{\mu_p} \propto \frac{m_{\mu}}{m_p} \]

2018/09/06

QTech 2018
Purpose of MuSEUM

• Measure the two RF resonances (ν_{12} and ν_{34}) at high magnetic field (1.7 T), and $\Delta \nu$ directly at zero field.
 – Different systematics from the magnetic field (negligible at ZF)

• Muonium ground state HFS ($\Delta \nu_{\text{HFS}}$)
 – Precise test of bound-state QED
 – Current uncertainty: 12 ppb
 – Test of CPT and Lorentz Invariance

• Muon magnetic moment relative to that of the proton
 – Basic property of muon
 – Current uncertainty: 120 ppb
 – Basic input parameter for the muon g-2 experiment

We aim to improve the uncertainties of both quantities by a factor of 10, taking advantage of the high intensity beam at J-PARC/MUSE.
Most Precise Test of Bound State QED

Experiment:

$\nu_{\text{HFS}}(\text{exp})$ 4463.302 765 (53) MHz [12 ppb]

$\mu_\mu/\mu_p = 3.18334524(37)$ [120 ppb]

$m_\mu/m_e = 206.768277(24)$ [120 ppb]

Theory:

$\nu_{\text{HFS}}(\text{theory})$ 4463.302 868 (271) MHz [61 ppb]

$\nu_{\text{HFS}}(\text{QED})$ 4463.302 720 (253) (98) (3) MHz

$\nu_{\text{HFS}}(\text{weak})$ -65 Hz

$\nu_{\text{HFS}}(\text{had. v.p.})$ 232 (1) Hz

$\nu_{\text{HFS}}(\text{had. h.o.})$ 5 (2) Hz

QED calculation: **Effort for 10 Hz accuracy in progress (by Eides et al.)**

Determination of the Muon Mass

\[\frac{\mu}{\mu_p}, a_\mu, \frac{\mu_p}{\mu_B} \rightarrow \frac{m_\mu}{m_e} \]

Muon mass (CODATA2016) determined by MuHFS (LAMPF 1999)
Why Mu HFS measurement is so important?

\(g-2 \) E821(BNL) 0.5ppm 3\(\sigma \) deviation

- Measurement of the deviation of muon spin direction (\(\omega_s \)) and muon momentum direction (\(\omega_c \)) \(\omega_a \propto (g-2)/2 = a_\mu \)

\[\Rightarrow \tilde{\omega}_a = \frac{e}{mc} \left[a_\mu \vec{B} - \left(a_\mu - \frac{1}{\gamma^2 - 1} \right) \beta \times \vec{E} \right] \]

\(a_\mu \) an independent precise muon mass measurement is required!

- The ratio to the proton NMR frequency is important!

\[\Rightarrow \frac{a_\mu}{\lambda - R} = \frac{\omega_a}{\omega_p} \]

From g-2 storage ring

From Muonium HFS

\[\frac{\omega_a}{\omega_L(\mu)} = \frac{a_\mu \frac{eB}{mc}}{g_\mu \left(\frac{eB}{2mc} \right) \left(\frac{g_\mu}{2} \right)} = \frac{a_\mu}{1 + a_\mu} \]

\[\frac{\omega_a}{\omega_L(p)} \frac{\omega_L(\mu)}{\omega_L(p)} = \frac{\omega_a}{\omega_p} \frac{\mu_p}{\mu_\mu} = R/\lambda \]

\(\frac{\mu_\mu}{\mu_p} \) accuracy from direct measurement of 120 ppb.

Experimental Layout

1. Muonium formation
2. RF spin flip
3. Positron asymmetry

Upstream Counter

Experimental Procedure

Online Beam Monitor
2D cross-configured fiber hodoscope

Kr Gas Chamber

Polarized muon beam 100% →

Muonium

decay e+

1.7 T Magnet

RF Cavity

RF Tuning Bar

Positron Counter
Segmented scintillation counter
Improvement of statistics

LAMPF Experiment

<table>
<thead>
<tr>
<th>Statistics</th>
<th>$\delta(\Delta\nu)$</th>
<th>$\delta(\mu_\mu/\mu_p)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kr Density/Pressure</td>
<td>10.9 ppb</td>
<td>107 ppb</td>
</tr>
<tr>
<td>Muon stopping</td>
<td>4.4 ppb</td>
<td>56 ppb</td>
</tr>
<tr>
<td>RF power</td>
<td>1.0 ppb</td>
<td>13 ppb</td>
</tr>
<tr>
<td></td>
<td>0.96 ppb</td>
<td>11 ppb</td>
</tr>
</tbody>
</table>

MuSEUM Improvements:

- **Statistics:**
 - LAMPF: DC 10^7/s
 - total 10^{13}
 - J-PARC/MUSE: **Pulsed 1×10^8/s**
 - H-Line
 - total 2×10^{15}

- **Systematics:**
 - magnetic field accuracy & uniformity
 - pressure dependence (longer cavity lower pressure)
 - muon stopping distribution measurement
 - RF power stability

2018/09/06

QTech 2018
J-PARC Muon Science Facility (MUSE)

H-Line: for particle and atomic physics large scale experiments, “precision frontier”.

Higher intensity tunable (4 – 50 MeV) μ^+ & μ^- beam.
(Exp.: MuSEUM, Deeme, g-2, ...)

Beamlines in Operation

S-Line: Surface muon (μ^+)
Slow (4 MeV) beam for condensed matter physics.

D-Line: Decay muon (μ^+ & μ^-)
Slow (50 keV) – fast (50 MeV) beam, general purpose.

U-Line: Ultra-slow muon (μ^+)
Ultra-slow (0.1 – 30 keV) beam for near-surface condensed matter physics, chemistry, etc.
MRI Magnet for High-Field Experiment

Second-hand 2.9 T MRI magnet

CW-NMR Field Monitoring System

Field Homogeneity (after shimming)

Spheroid:
- r=100 mm, z=300 mm

1.4 ppm p-p

18 ppb

Long Term Stability

64 Hz / 9.7 days

0.003 ppm /h

2018/09/06

QTech 2018
RF Cavity for High Field Experiment

\[\nu_{12} = 1.906 \text{ GHz} \]
\[\nu_{34} = 2.556 \text{ GHz} \]

Test Cavity

<table>
<thead>
<tr>
<th>Modes</th>
<th>Q (measured)</th>
<th>Q (simulation)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TM110</td>
<td>11,300</td>
<td>29,700</td>
</tr>
<tr>
<td>TM210</td>
<td>8,050</td>
<td>28,900</td>
</tr>
</tbody>
</table>

MWS simulation

3D CAD

Q Value
Positron Counter (1): Scintillation Position Detector

Kanda, Kojima

MPPC (Multi-Pixel Photon Counter)
1.3 mm x 1.3 mm active area
(Hamamatsu)

Plastic scintillator + MPPC + Kaliope readout circuit

Segmented scintillation detector

- Scintillation counter with SiPM readout
- Unit cell: 10 mm x 10 mm x 3 mm
- Area: 240 mm x 240 mm
- 24x24 segments x 2 layers = 1152 ch
- High-rate capability required
- Pileup loss at 3 MHz/ch ~ 2%

2018/09/06

QTech 2018
Positron Counter (2): Silicon Strip Detector

<table>
<thead>
<tr>
<th>Item</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensor type</td>
<td>single-sided, p+ on n</td>
</tr>
<tr>
<td>Size</td>
<td>98.77 mm × 98.77 mm</td>
</tr>
<tr>
<td>Active Area</td>
<td>97.28 mm × 97.28 mm</td>
</tr>
<tr>
<td>Strip pitch</td>
<td>0.19 mm</td>
</tr>
<tr>
<td>Strip length</td>
<td>48.575 mm</td>
</tr>
<tr>
<td>No. of strips</td>
<td>512 x 2 blocks</td>
</tr>
<tr>
<td>Thickness</td>
<td>0.32 mm</td>
</tr>
</tbody>
</table>

Silicon strip detector

- Readout chips (SliT128A, 128 ch/chip)
- Developed for J-PARC g–2/EDM experiment
- Highly-segmented
- High-rate capability
- S/N ~ 21
Preliminary Systematic Error (HF)

<table>
<thead>
<tr>
<th></th>
<th>Accuracy</th>
<th>ν_{12} and ν_{34}</th>
<th>$\delta(\Delta \nu_{\text{HFS}})$</th>
<th>$\delta(\mu_{\mu}/\mu_p)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Magnetic Field*</td>
<td>30 ppb</td>
<td></td>
<td>0.0 ppb</td>
<td>15 ppb</td>
</tr>
<tr>
<td>RF power</td>
<td>0.2 %</td>
<td>4 Hz</td>
<td>0.8 ppb</td>
<td>8 ppb</td>
</tr>
<tr>
<td>Kr gas temperature</td>
<td>0.2 deg.</td>
<td>< 2 Hz</td>
<td>0.4 ppb</td>
<td>4 ppb</td>
</tr>
<tr>
<td>Kr gas pressure</td>
<td>1 Pa</td>
<td>1 Hz</td>
<td>0.2 ppb</td>
<td>0 ppb</td>
</tr>
<tr>
<td>H impurity</td>
<td><50 ppm</td>
<td>1 Hz</td>
<td>0.5 ppb</td>
<td>0 ppb</td>
</tr>
<tr>
<td>Quadratic dependence</td>
<td></td>
<td>5 Hz</td>
<td>1.0 ppb</td>
<td>5 ppb</td>
</tr>
<tr>
<td>Muonium position (x,y)</td>
<td>1 mm</td>
<td>3 Hz</td>
<td>0.6 ppb</td>
<td>6 ppb</td>
</tr>
<tr>
<td>Muonium position (z)</td>
<td>1 mm</td>
<td>< 1 Hz</td>
<td>0.2 ppb</td>
<td>2 ppb</td>
</tr>
<tr>
<td>Beamline</td>
<td>10(e-4)</td>
<td>< 1 Hz</td>
<td>0.2 ppb</td>
<td>2 ppb</td>
</tr>
<tr>
<td>Detector pile-up</td>
<td>w/o absorber</td>
<td>2.8 Hz</td>
<td>0.5 ppb</td>
<td>3 ppb</td>
</tr>
<tr>
<td></td>
<td>w/ absorber</td>
<td>0.3 Hz</td>
<td>< 0.1 ppb</td>
<td>< 1 ppb</td>
</tr>
</tbody>
</table>

*should be re-estimated by latest progress and further MC simulation.

Total systematic error of $\Delta \nu_{\text{HFS}}$~2 ppb, and μ_{μ}/μ_p~ 20 ppb
Zero Field Measurements at D-Line

Experimental Setup

Muon Beam

Online Beam Profile Monitor

Magnetic Shield

Positron Counters

Readout Electronics

Kr Gas Chamber

New RF Cavity for Zero Field

180 mm

RF Intensity

Δν = 4.463 GHz

TM220 mode
Larger cavity
More muon stop
Q-Value: 20,000 (calc.)

Residual Magnetic Field

~ 80nT

Upstream Window

Downstream Window

2018/09/06

B-Field Norm (nT)

0 10 20 30 40 50 60 70 80 90 100

Position (mm)

0 50 100 150 200 250

QTech 2018
Systematic Error in ZF Measurements

Expected accuracy ~10 ppb (or 40 Hz), if we have enough muons!
Results (1): **Time Integral Method**

- Scintillation Position Detector Data –

![Graph showing Off Resonance and On Resonance](image)

Statistical uncertainty:

- 2016 Feb. \sim 20 kHz (5ppm)
- 2017 Feb. \sim 4 kHz (1ppm)
- 2017 June \sim 2 kHz (0.5ppm)
- 2018 March \sim 1kHz, measured at 0.4, 0.55, 0.7 atm.
- 2018 June \sim 1kHz, measured at 0.3 atm Kr gas pressure.

Systematic uncertainty: Estimation in progress

Previous ZF Experiment at LAMPF:

$\Delta v_{HFS} = 4\,463\,302.2 \pm 1.4$ kHz (0.3 ppm)

New world record at ZF ??

Data analysis on going
Results (2): **Time Differential Method**

– Silicon Strip Detector Data –

Simulation:

![Simulation graph showing signal over time for different frequencies.](image)

Experiment (2017 June):

![Experiment graphs showing signal over time.](image)

Preliminary

\[\Delta \nu_{\text{HFS}} = 4 \, 463 \, 302.2 \text{ kHz} \pm 3.1 \pm 0.2 \text{ kHz} \]

Statistics:

- less data (smaller detector area)

Systematics (main):

- RF power drift (200 Hz)
- gas pressure extrapolation (66 Hz)
 (only one pressure data !)

Possible advantages of this method:

- Each detuning frequency data fitted individually.
- Can determine \(\Delta \nu_{\text{HFS}} \) with only one frequency data.
- Most sensitive detuning frequency is \(~60 \text{ kHz}.\)
- Can improve statistical uncertainty by 3.2 times compared to the conventional method.
- Can reduce systematics of RF power variation (free fitting parameter).
- Need high-statistics data.
Summary and Next Step

• New Precise muonium HFS measurements at high magnetic field will be carried out in a few years (H-Line).

• Present expected systematic error estimated as

 HFS Magnetic moment (μ_μ/μ_p)

 ~ 2 ppb (~ 8Hz) \textit{preliminary}

 ~ 20 ppb

• Zero-field measurements at existing beamline (D-Line) in progress for engineering run of the apparatus.

 ✓ Muonium HFS resonance clearly observed!
 ✓ Soon new world record at zero field! (data analysis in progress)
 ✓ Time-Differential Method promising to improve statistics and reduce RF power fluctuation systematics.
 ✓ Need improvement of the RF power stability (systematics) !!!

Stay tuned!
Thank You
For
Your Attention